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Introduction 

Uncertainty Analysis is the prediction of the uncertainty 
interval which should be associated with an experimental 
result, based on observations of the scatter in the raw data 
used in calculating the result. In this paper, the process is 
discussed as it applies to single-sample experiments of the sort 
frequently conducted in research and development work. 
Single-sample uncertainty analysis has been in the engineering 
literature since Kline and McClintock's paper in 1953 [1] and 
has been widely, if sparsely, practiced since then. A few texts 
and references on engineering experimentation present the 
basic equations and discuss its importance in planning and 
evaluating experiments (see Schenck, for example [2]). Un­
certainty analysis is frequently linked to the statistical 
treatment of the data, as in Holman [3], where it may be lost 
in the fog for many student engineers. More frequently, only 
the statistical aspects of data interpretation are taught, and 
uncertainty analysis is ignored. 

For whatever reasons, uncertainty analysis is not used as 
much as it should be in the planning, development, in­
terpretation, and reporting of scientific experiments in heat 
transfer and fluid mechanics. There is a growing awareness of 
this deficiency among standards groups and funding agencies, 
and a growing determination to insist on a thorough 
description of experimental uncertainty in all technical work. 
Both the International Standards Organization [4] and the 
American Society of Mechanical Engineers [5] are developing 
standards for the description of uncertainties in fluid-flow 
measurements. The U. S. Air Force [6] and JANNAF [7] each 
have handbooks describing the appropriate procedures for 
their classes of problems. The International Committee on 
Weights and Measures (CIPM) is currently evaluating this 
issue [8]. 

The prior references, with the exception of Schenck and, to 
a lesser extent, Holman, treat uncertainty analysis mainly as a 
process for describing the uncertainty in an experiment, and 
end their discussion once that evaluation has been made. The 
present paper has a somewhat different goal: to show how 
uncertainty analysis can be used as an active tool in 
developing a good experiment, as well as reporting it. 

The concepts presented here were developed in connection 
with heat transfer and fluid mechanics research experiments 
of moderately large size (i.e., larger than a breadbox and 
smaller than a barn) and which may frequently require three 
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to six months to "debug." The "debugging" process involves 
modifying the rig or the data-reduction program to remove, 
or account for, errors introduced by the apparatus and 
procedure. This phase ends when the experiment has ac­
ceptably small fixed errors over its entire operating range. In 
the early stages, when attention is focused on improving 
uniformity and stability, what is needed is a technique for 
evaluating each irregularity in the data, to see whether it is 
significant or just the result of random variations in the data. 
In the later stages of development, it is important to evaluate 
the significance of any differences between the results from 
the new apparatus and the accepted results for the same 
nominal case. Once the apparatus is commissioned for data-
taking, the test runs typically involve hundreds of data points, 
taken over a period of months, which are to be compared with 
each other and with data from other sources. Each data point 
will probably be taken only once, so these are single-sample 
experiments - there will be no averaging of the results. What 
is needed in this phase is a method of evaluating the day-to­
day scatter about the mean trends, and the significance (if 
any) of both the trends and the scatter. The final stage, 
reporting the results and comparing them with the existing 
literature, requires a method of analyzing the uncertainty 
which permits a strict comparison with the works of others, at 
different laboratories and at different times. 

As the above paragraph points out, uncertainty analysis 
results can provide decision criteria in five different stages of 
an experiment. There are three different types of information 
which can be obtained from an uncertainty analysis for use in 
these five situations, as will be discussed later in this paper. It 
is important, however, that any predicted uncertainty be 
really believable to the experimenter; serious day-to-day 
decisions will be based upon it - for example, whether to tear 
down the rig for repair or to press on. The researcher must 
have confidence both in the method used and the selection 
criteria by which elements are included in the tally of un­
certainties. 

The present paper concerns uncertainty analysis applied to 
single-sample experiments which have negligible fixed error. 
Not all experiments have these two important properties. 
Many industrial experiments use data averaging (i.e., multiple 
samples), and many have significant fixed errors compared to 
the residual random error after averaging. There is an im­
portant work by Abernethy et al. [6] which describes 
procedures for dealing with multi-sample experiments in 
which the bias error is significant and may even dominate the 
final uncertainty. Abernethy's procedure covers cases in 
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which several results are averaged (not covered by the present 
method) and where the different subordinate results combined 
in calculating the principal result may have different degrees 
of freedom (not covered by the present method). It is a 
powerful and general method, but complex. The uncertainty 
defined by Abernethy's method is the sum of the "bias" (the 
estimated fixed error) and " t 9 5 x S " (accounting for the 
random errors). The term S is the standard deviation of the 
sample, and t95 is the 95 percent confidence level factor from 
the two-tailed Student's t-distribution. When the sample has 
30 or more degrees of freedom, t95 can be used as 2.00 for 
most purposes. The most important conceptual difference 
between Abernethy's method and the present one is in the 
definition of uncertainty. The present paper defines un­
certainty in terms of only the random components of ex­
perimental error, while Abernethy et al. include the fixed 
error in the final presentation of uncertainty. For experiments 
with negligible fixed error, this difference in definition has no 
effect. 

The Zero-Centered Experiment 

The objective of experimental work is to learn the true 
value of some result. Real experiments, however, are subject 
to both fixed errors (biases) and random errors (precision 
errors). An experiment which has no fixed error will produce 
the true value as the average of many trials and, in this paper, 
will be called a zero-centered experiment. The name was 
chosen because this ideal experiment has zero fixed error, and 
its measured results are centered about the true value. 

The zero-centered experiment is a goal, not often a reality. 
Experiments whose outcome is highly variable compared with 
the precision with which it can be measured might be con­
sidered zero-centered, such as scorekeeping in bowling, or 
golf, or studying turbulence. In those cases the process itself 
generates large random excursions, yet the measurement of 
the result may be quite precise. From a practical standpoint, 
some other experiments can be made zero-centered by refining 
them to the point where their fixed error is negligibly small 
compared to their precision index. This can frequently be 
done for single-sample experiments, but only rarely for ex­
periments where the results will be averaged. Averaging 
reduces the effect of random errors but does not affect the 
fixed error; hence an experiment which might qualify as zero-
centered if run as a single-sample experiment might not 
qualify if sixteen runs were averaged. In the latter case, the 
fixed error would be unchanged while the precision index of 
the average would be reduced by a factor of four. 

The whole process of "debugging" an experiment, so 
familiar to all experimentalists, is aimed at removing the 
causes of recognized fixed errors. 

It is important to this "debugging" process that the un­
certainties in the experiment be assessed conservatively. 
Conservatively, in this case, means "as tightly as can be 
justified," since inflating the uncertainties expands the 
ambiguity band within which false results may be accepted as 
true. Inflating the uncertainty estimates through false 
modesty is not "conservative" but, in fact, helps conceal 
faults in the experiment. 

Because of the importance of working with the minimum 
uncertainty which must be expected in a given experiment, one 
must have clearly defined criteria for deciding which terms are 
to be retained in the analysis and which are to be left out. It is 
helpful, first, to review the sources of scatter in data, to 
classify the various sources, and to decide how and when to 
include their effects in an uncertainty analysis. 

The Sources of Scatter in Data 

The term "scatter" is a qualitative descriptor of the 
variance in data, the extent to which the individual values 
differ from the mean. Where does this scatter come from? 

Real processes are affected by more variables than the 
experimenters wish to acknowledge. A general representation 
is given in equation (1), which shows a result, R, as a function 
of a long iist of real variables. Some of these are under the 
direct control of the experimenter, some are under indirect 
control, some are observed but not controlled, and some are 
not even observed. 

R=R(xl,X2,xi,x4,x5,X(>, . . . ,JC/v) (1) 

An experiment aimed at studying the result, R, as a func­
tion of one or more variables will probably be designed as a 
partial derivative experiment, varying one or more of the 
controlled variables, hoping that the rest will remain constant. 
The experimenters wish is illustrated in equation (2), which 
treats everything to the left of the semicolon as a controlled, 
or at least observed, variable, and all the other terms as 
parameters which are not expected to change or be important 
during the experiment. The fact that this is an artificial 
distinction is brought home when all the controlled variables 
are held constant and the results still display scatter. 

R=R(Xl,X2,X},X4; x5,x6, . . . ,xN) (2) 

Time is a monotonic variable in every experiment, and 
many factors outside an experiment change with time. The 
effect of time may be direct, as in the change of state of a 
system during a transient or indirect, as when a supposedly 
steady parameter displays timewise variations. There are 
short-term (microseconds, seconds, minutes) and long-term 
(hours, days, months, and years) effects. Many processes are 
unsteady, to some extent, and then the time constant of the 
system and the instruments becomes important. When an 
unsteady system is examined through instruments whose time 
constants are different from that of the system and also 
different from each other, the different phase lags of the 
different instruments will result in data which show random, 
uncorrelated variations-jitter in the instruments yields 
scatter in the data, which, in turn, produces scatter in the 
result. 

Human judgment is also a variable. Different observers 
examining an instrument face may read it differently on each 
successive trial, even though the display might remain ab­
solutely fixed. 

Instrument calibrations are not the same from instrument 
to instrument, even of the same nominal type and made by the 
same manufacturer. 

The present method of analysis is aimed at helping the 
experimenter properly account for the effects of judgment, 
jitter, and calibration so the real behavior of the process can 
be seen. Then, if there are undesired factors affecting the 
process, their effects can be recognized and dealt with. 

There remains the problem of deciding which effects should 
be included in the uncertainty analysis and how they should be 
treated. This is discussed in the next section. 

Bias, Precision, and Uncertainty 

There are two different concepts to deal with: statistical 
operations and uncertainty. Statistics can be applied only to 
data which exist; uncertainty is a prediction. The terms 
"bias" and "precision" are illustrated in Fig. 1(a). The points 
on the abscissa represent a set of data - 30 measurements of 
the variable x. The curve shown is a normal distribution curve 
representing the frequency of occurrence of different values 
of x in an infinitely large sample (i.e., the parent population). 
The difference between the mean value of the data, x, and the 
true value is the "bias error" or "fixed error" of the data set. 
The dispersion of the curve, measured by the standard 
deviation, ax, is a property of the distribution function, not of 
the set of 30 data points. The standard deviation can only be 
estimated, from any finite set of data. The estimator of the 
standard deviation is Sx, a value calculated from the data. 
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Either ax or Sx can be called a "precision index." Witness 
lines in Fig. 1(a) show the area enclosed by lines spaced 2ax 

apart, representing approximately 95 percent of the total area. 
Uncertainty is illustrated in Fig. 1(b), which shows a single 

data point, x, and a dashed curve, again a normal distribution 
curve. Each point on the curve in Fig. \(b) represents the 
probability that the mean would lie at that location if a large 
set of data were taken. 

The curve in Fig. \(b) can be constructed about the 
'measured value x only if ax is known, and that is the main 
objective of the present paper: developing a method for 
estimating the value of ax for the population of data from 
which the one sample, x, was taken. 

The witness lines in Fig. 1(b) are drawn at the ±2<JV points, 
to include approximately 95 percent of the area under the 
curve. For this case, the uncertainty prediction is expected to 
be reliable with 95 percent confidence. Another way of 
describing this is to say that the mean value is expected to fall 
within those bounds 19 times out of 20. Yet another is to say 
that the odds are 20/1 that the mean lies within those bounds. 

The dashed curve in Fig. 1(b) is drawn exactly centered 
about the measured data point; no offset is shown which 
would account for any fixed error. This is because there is no 
way to estimate the fixed error in a set of measurements based 
on those data alone. The dispersion is all that can be 
estimated. The standard deviation estimator, Sx, will be 
within a few percent of ax if 30 observations are made. 

Figure 2 illustrates Abernethy's method, assuming a 
symmetrical distribution of fixed errors. The fixed error is 
estimated from the best available information and added to 
the random terms. The result is an estimate of the range 
within which the true value should lie, accounting for both 
effects. 

The terms "bias errors" and "precision errors" have long 
been used to discuss the fact that every measurement is subject 
to two types of errors: one which would change from trial to 
trial and one which would not. These terms are synonymous 
with "fixed" and "random." 

The fact is, though, that the question of whether an error 
component in a particular test is "bias" or "precision," 
according to the classical definitions, cannot be answered 
without knowing the intent of the experimenter, since the 
answer depends on how the measurement might be repeated. 
Abernethy [6] devotes a section to discussion of the definition 
of the Measurement Process in which he points out that the 
"precision" for "back-to-back" tests on the same stand will 
be different from that for stand-to-stand comparisons, 
because the calibration errors of the instruments, which are 
"bias" terms in any single-stand test, become "precision" 
terms when comparative tests between two test stands are 
considered. 

The basic issue is simple: Which error terms must be 
regarded as variables under the type of replication proposed 
for the experiment? Regardless of whether the final appraisal 
of uncertainty is being done by Abernethy's method or the 
present method, that question must be answered. 

Identification of the random terms requires that the nature 
of the proposed replication be specified well enough to allow a 
definite answer to the question: "Would this component of 
error change if I repeated the measurement in the specified 
manner?" 

It seems natural, in view of the important role of replication 
in this whole process, to use the replication level (i.e., how 
much of the experiment is allowed to change) as the basis for 
classifying the error terms. 

Following the present approach, specification of the 
Replication Level allows the proper set of random error terms 
to be identified for inclusion in the uncertainty analysis. Using. 
Abernethy's approach, specifying the Replication Level 

l a s 
Error 

Fig. 1 (a) Defining bias error and precision error of a set of data 

(measured) 

— ±2av -

Fig. 1(b) Prediction of the true value based on one measured value and 

(The True Value Should Fal l within This Interval) 

Fig. 2 Illustrating the uncertainty interval when bias and precision are 
combined, after Abernethey et al. [6] 

would be the first step in identifying the "bias" and 
"precision" terms. 

As an example of the use of replication levels in this 
process, consider the measurement of the dynamic head of a 

252/Vol. 104, JUNE 1982 Transactions of the ASME 

Downloaded 30 Aug 2010 to 139.82.149.123. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



gas stream using a pitot-static probe. The observed pressure 
difference (total to static) for any single observation may 
differ from the actual pressure difference at that instant due 
to several errors: 

P ind =P.ia + Et + E2+E3 +E4+ES + E6+E1 

where 

E\ = transducer calibration error, 
E2 = probe geometry error, 
E3 = probe misalignment error, 
E4 = shear displacement error, 
Es = turbulence-induced error, 
E6 = time-varying excursion, and 
E-i = scale-reading interpolation error. 

For any one observation, each of these errors has a definite 
value, and only if we consider possible replications is it even 
appropriate to ask whether that error should be called 
"fixed" or "random." 

To designate an error as "random," a type of replication 
must be identified which allows that error to take on different 
values on each repeated trial. Consider the simplest possible 
replication of the experiment described above. Nothing is 
allowed to change; we simply photograph the face of the 
indicator and read the pressure difference from the 
photograph, several times. If each is an independent ob­
servation (for example, by using different observers for each 
reading), then the scale-reading interpolation error will be the 
only random variable and the only term which should be 
included in calculating the uncertainty in the measured 
pressure. There are only limited uses for that particular 
estimate of uncertainty, for example to answer the question, 
"Is there any chance of measuring the pressure within ±1 
percent using this type of pressure indicator?" 

As a second try, instead of making repeated observations 
on a single photograph, suppose that several independent 
observations were made of the face of the indicator, while the 
system was running. In addition to the scale-interpolating 
error, any time-varying excursions in the reading would also 
be sampled by this new replication, and both would be 
components of the uncertainty. This level of replication 
acknowledges the unsteadiness in the readings as well as the 
interpolation error, and is the lowest level ever really en­
countered in the laboratory. Repeated trials with the same 
apparatus and no real change in the system behavior will 
display scatter about their mean value consistent with the 
uncertainty calculated at this level. 

It would be possible to define a new level of replication each 
time one new constraint was relaxed - each time increasing the 
number of terms which should be included in the calculation 
of " the" uncertainty in the measured pressure. The most 
general replication would be if the probe was removed after 
each reading, exchanged for another probe which was similar 
but of different identity, and put back into a similar but 
different tunnel, and, for every measurement, every in­
strument used was exchanged for another one, again similar 
but different. At this level, every factor is a variable, and 
every factor should appear in the uncertainty analysis. The 
resulting prediction of uncertainty would be appropriate for 
comparing the new data with data from other sources, in 
different laboratories, at different times, for nominally 
similar conditions. 

It should be apparent by now that the uncertainty in a 
measurement has no single value which is appropriate for all 
uses. The uncertainty in a measured result can take on many 
different values, depending on what terms are included. Each 
different value corresponds to a different replication level, 
and each would be appropriate for describing the uncertainty 
associated with some particular measurement sequence. In 
Abernethy's parlance, each replication level divides the 
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Fig. 3 Flow diagram for a jitter program.* Existing data reduction 
program for calculating F. 

candidates differently between "bias" and "precision," but 
each could be appropriate for some "defined measurement 
process." 

The Basic Mathematical Forms 

In the following discussion it is assumed that a single value 
of the result, R, is to be calculated from a single set of values 
of the necessary input data, the xt. 

Each data bit is to be presented either in the form given by 
equation (3a) or (3b), with an assignment of the best estimate, 
x (the measured value), the estimated uncertainty interval, 5A", 
or bXj/Xj, and the associated confidence level, or "odds." 

The uncertainty estimates, &x, or bXj/x, in this presentation, 
are based, not upon the present single-sample data set, but 
upon a previous series of observations (perhaps as many as 30 
independent readings) made of the x,-instrument during the 
rig-shakedown period, at conditions near those of the present 
data set. These estimated uncertainty values should be based 
on measured statistics of data from that instrument, under the 
appropriate conditions. In a wide-ranging experiment, these 
uncertainties must be examined over the whole range, to 
guard against singular behavior at some points. 

Absolute Uncertainty: 

Xi = Xj ± bx, (20/1) (3a) 
Best Uncertainty Odds 

Estimate Interval 

Relative Uncertainty: 
Xi = Xi ± bXj/Xj (20/1) (ib) 

Best Uncertainty Odds 
Estimate Interval 

The result, R, is to be calculated from the data using a data-
reduction equation whose form is known. Quite likely, this 
will be in the form of a data-reduction program set up for 
computer data handling. In any case, the form of the equation 
is known explicitly. As a consequence of the uncertainty in 
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each of the x,, there will be an uncertainty in the final result 
value, R. There are two ways to estimate the uncertainty in R: 
Worst-Case Combination and Constant Odds Combination. 
These are illustrated by equations (4) and (5), shown below. 
The choice between the two is usually made based on the 
consequences of being wrong. There are a few situations 
where the penalty for failure is so severe that no recognized 
risk would be taken. In most engineering cases, however, 
Constant Odds Combination is used. In this method, if the 
•uncertainty in each input variable is specified at 20/1 odds, 
then the calculated uncertainty interval for the result is also 
valid for 20/1 odds. 

Worst Case: 

dR 
T—&*i 
dXj + 

dR 
7 &x2 
dx2 

+ . . . 
dR 

bxN 
dxN 

Constant Odds — General Form 

Kline and McClintock [1] showed that equation (5) assesses 
the uncertainty in R with good accuracy, for most functions 
of engineering importance. There are three requirements 
which, in practice, are easy to satisfy: 

• Each of the x, must be an independent variable. 
• Each of the xt must come from a Gaussian distribution. 
• The odds must be the same for each input uncertainty 

statement. 

If the bx} are taken to be variances, then equation (5) holds 
without the need for Gaussian-distributed populations. 

In many cases of importance in engineering calculations, 
the result is expressed as a product string. In such cases, it is 
particularly simple to find the relative uncertainty of the 
result: 
If 

R=x1xbiXL
x 

then 

Constant Odds — Product Form: 

bR (V S*i \ 2 / , &x2\
2 ~) 1/2 

Equations (5) and (6) are the basic working equations of 
uncertainty analysis. They pose no particular difficulty in 
evaluation, providing that information is available as to the 
appropriate values of the bxt for the task at hand. 

The central problems are the assignment of the proper value 
to the uncertainty of each input item and the selection of 
which items to include in the analysis, i.e., How many, and 
which, variables are important? 

The appropriate value of uncertainty for a given variable is 
determined not only by the instruments used, but by the use to 
which the final uncertainty value will be put. One set of 
uncertainty inputs should be used for evaluating the 
significance of scatter in the data, while another set should be 
used for comparing the present results with those of other 
workers. The interrelationship between end-use and un­
certainty input values has been mentioned before but will be 
amplified in the next section. 

Replication Levels 

The concept of replication level as an aid in identifying the 
terms which should be included in the uncertainty analysis 
was introduced in an earlier section. At that time, it was 
implied that one could define an infinite number of different 
ways of repeating any given experiment, and that each would 
require a slightly different treatment of uncertainty. Ex-, 
perience has shown that three different replication levels are 

sufficient to handle most experimental situations. These are 
named zero(th), first, and N(th) order replications. 

The zero(th) order replication does not permit anything to 
change but the act of observation. The first order permits time 
to run as a real variable, with the concomitant changes in each 
observed data bit. The 7V(th) order replication allows for the 
possible effects of uncertainties in every instrument and 
parameter. These three find different, specific uses in 
developing experimental programs. The present section 
discusses their definitions in detail, and following sections 
discuss their use. 

Zeroth order is described by the following conditions: time 
itself is frozen; the display of each instrument is considered to 
be invariant under replication; the only component of un­
certainty at this order is the interpolation uncertainty, i.e., the 
inability of independent human observers to assign the same 
numerical value to the displayed xt. 

The values of uncertainty at this level are often assigned as 
"one-half the smallest scale division" or some similar rule of 
thumb. This order of uncertainty is denoted bxl0 for the /th 
variable. 

First Order: At this order, time is the only variable; with the 
experiment running, the display for each instrument is 
assumed to vary stochastically about a stationary mean, xt. 
The first order uncertainty interval includes the timewise 
variation of the display and its interpolation uncertainty. The 
value of uncertainty at this order is denoted SxiA and is larger 
than bxi0 for any real process. No changes in instruments are 
considered at this level. 

The value of 8X. can be estimated from a set of repeated 
observations of the value of x-: with the apparatus operating 
at its set point. The set of readings should be made during 
steady-state operation or should be adjusted for any 
monotonic trend in the mean during the observation period. 
The intent is to arrive at a valid estimate of the standard 
deviation of the population of possible values of x, from 
which future (single-sample) experimental observations will 
be taken. A diagnostic sample of 20 to 30 elements allows a 
confident estimation. For a Gaussian distribution, the 
standard deviation of a sample of 20 elements, S20, is within 5 
percent of the standard deviation of the population 
(S20 s0.96(j) according to Thomas [9]. The value bxiA should 
be taken as 2cr, or 2.083 S20, if odds of 20/1 are desired. 

It is important to note that a requirement for 20 diagnostic 
observations of each xt is not the same as a requirement for 
taking 20 repeated runs on each set point of an experiment. 
The diagnostic observations of x-, comprise a separate test, 
which should be done at the beginning of the testing program, 
covering the range of the proposed experiment. The principal 
limiting factor is that the period during which the ob­
servations are made be representative of steady operation. 

Just as statisticians frequently permit the use of "pooled 
variance," so experimenters frequently will pool their ob­
servations on an apparatus — relying upon prior experience 
and a brief period of observation to assign the values of the 
bxiA. It is probably not justified, in terms of the effort 
required, to do a full statistically valid work-up of each bx,^ . 
The basic method has a sound, statistically valid basis, and 
small errors in the estimates of the bx,•_, will not defeat the 
objective. If the labor involved in a "rigorous" treatment is 
so formidable that the entire effort is abandoned, then more is 
lost than if good judgment had been used to execute a 
reasonably accurate analysis. 

Nth Order: At this order, time and the instrument identities 
are considered to be variables. For each conceptual 
replication, each instrument is considered to have been 
replaced by another of the same type. This makes "in­
strument identity" a variable, and introduces the uncertainty 
due to the calibration of the instrument used. The Mh order 
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uncertainty, &r, N, is always larger than the first order un­
certainty. 

It will be shown in the last section of this paper that, for 
single sample situations: 

5x,N=((5x,,ca l)
2+(5x,.,)2)1/2 (7) 

where 

&K;,cai = the 2a value for the ensemble average of 
calibrations of instruments of this type, 

8x:l = the 2a value for the stochastic uncertainties 
observed on repeated observations. 

There is an immediate and very practical difficulty with 
executing Mh order uncertainty analysis: manufacturers of 
instruments do not describe the uncertainties in their products 
in the appropriate terms. It is necessary for the experimenter 
to assign the calibration uncertainty, based on whatever 
evidence can be assembled. 

In critical situations, one can call for a detailed calibration 
of each instrument (i.e., the generation of a complete output-
input response surface). This has the effect of identifying the 
individual instrument, to within the uncertainty interval of the 
standard instrument used in the calibration. If that un­
certainty interval is less than about 1/3 or 1/4 of the 
stochastic uncertainty in the reading, 8x,j, then the in­
strument calibration can be regarded as "certain." A com­
plete data-reduction program, one which includes detailed 
calibration curves for every instrument, could then revert to a 
first-order estimator and be subject only to first order un­
certainties. 

Each replication level (zeroth, first, and Mh) yields a 
different estimator of the experimental uncertainty (8R0, 8R,, 
and 8RN). These have different uses, and quite properly have 
different values. 

Uses of the Uncertainty Estimators of Various Orders. For 
every use, the principal feature is the same: iteration between 
the experiment and the uncertainty analysis to improve the 
control of the experiment. The uncertainty analysis allows the 
researcher to anticipate the scatter in the experiment, at 
different replication levels, based on present understanding of 
the system. Comparison of the achieved result with the ex­
pected result then gives either a check or a warning. If the 
achieved results contain no more deviation than predicted, 
this indicates that the experiment is under control. If the 
achieved results display more than the predicted variation, 
this constitutes a warning that the experiment is sensitive to 
some uncontrolled or unobserved variable which is causing 
significant error; the experimenter can then take steps to 
correct the situation. 

In the following paragraphs, the principal uses of each 
replication level will be discussed. 

Zeroth Order. The calculated value 8R0 represents the 
minimum uncertainty in R which could be obtained. If the 
process were entirely steady, the results of repeated trials 
would lie within ± 5^0 of their mean, approximately 95 
percent of the time. No real experiment could do better than 
8R0. The zeroth order replication concept is mainly used as a 
planning tool, as one criterion for accepting a proposed set of 
instruments as being sufficiently readable for a planned 
experiment. If the desired result cannot be achieved with 
sufficient precision at zeroth order, then it cannot be achieved 
at all, and a different experimental approach should be 
selected. 

Once an experiment has been put "on-line," if repeated 
trials display scatter which is significantly larger than ±8R0, 
this is evidence that there is significant unsteadiness in the 
process. The unsteadiness may be concealed, since it may be 
occurring in an unobserved variable. When this situation 
occurs, the observed instruments will be steady during each 
observation period, but the dependent variables will assume 

different values on repeated trials, even though the observed 
independent variables are held constant. If the standard 
deviation of the results is significantly larger than 1/2 8R0, 
then one must suspect a hidden variable. Unsteadiness in this 
sense includes lack of repeatability in startup or reset control. 

First Order: The calculated value of 8RU the first order 
uncertainty, estimates the scatter in R which must be expected 
on repeated trials with the apparatus at hand, considering the 
documented timewise unsteadiness in the instruments used. 
The standard deviations of repeated trials would be equal to 
1/2 8R, if the data reduction program were sufficiently 
complete to acknowledge each physical mechanism which 
affected R. If the standard deviation of repeated trials is 
significantly larger than 1/2 8RU then the process being 
observed is sensitive to variables which are not being ac­
counted for in the data reduction program. Such an oc­
currence is a warning to the experimenter that diagnostic tests 
and development work on the test facility, control procedures, 
or data-reduction program are necessary. 

As an example, suppose that the momentum thickness of a 
boundary layer was being calculated based only on velocity 
measurements — not accounting for density variations within 
the boundary layer which might be caused by small variations 
of wall temperature (reflecting, in turn, changes in ambient 
temperature during the conduct of the experiment). Actual 
results on successive trials would include not only the 
stochastic uncertainties inherent in measuring velocity and 
position, but also the "unrecorded" effects due to the density 
differences. As a consequence, the actual results would 
display a standard deviation greater than the predicted value 
of 1/2 8R{. This would be the warning that some mechanism 
was acting which was not being accounted for. 

The first order uncertainty interval is chiefly useful during 
the debugging phase of an experiment, when the test system is 
being developed. It is the principal quantitative tool for 
deciding when the experiment is sufficiently repeatable, that 
is, well controlled. 

When the standard deviation on repeated trials is 
significantly larger than expected, based on the first order 
uncertainty predicted, this is a warning that unobserved 
variables are affecting the outcome of the experiment. 
Diagnostic tests should then be conducted to identify the 
mechanism involved and to acknowledge that mechanism in 
the data-reduction program. 

When the standard deviation of repeated trials is acceptably 
close to the first order uncertainty prediction, then there is no 
further evidence of difficulty; the repeatability phase of 
development of the experiment can be considered complete. 

It is important that the first order intervals for the 8x{ be set 
as small as can be justified by observations on the actual 
apparatus. Ifthe&r, j are taken larger than necessary then 8R x 

will be too large, and the diagnostic development may be 
terminated while the experiment is still incompletely described 
by its data-reduction program. If, on the other hand, the 8xt 

are set unrealistically low, then a check on repeatability may 
never be achieved. Identification of the appropriate values for 
the &*:,, is thus the critical problem of experimental control. 

Nth Order: The calculated value of 8RN, the Mth order 
uncertainty, estimates the scatter in R which could be expected 
with the apparatus at hand if, for each observation, every 
instrument were exchanged for another unit of the same type. 
This estimates the effect upon R of the (unknown) calibration 
of each instrument, in addition to the first-order component. 
The Mh order calculations allow studies from one experiment 
to be compared with those from another ostensibly similar 
one, or with " t rue" values. 

If the results from two different (but nominally identical) 
experiments disagree significantly, compared with their Mh 
order uncertainty intervals, then either: (i) the two ex­
periments are actually studying different situations, or (ii) at 
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least one of the experiments is in error, Condition (i) might be 
generated, for example, by unmeasured differences in initial 
conditions of the experiment or unrecognized dependence of 
the process on some characteristic of the apparatus. 

The Mh order uncertainty calculation must be used 
wherever the absolute accuracy of the experiment is to be 
discussed. First order will suffice to describe scatter on 
repeated trials, and will help in developing an experiment, but 
Mh order must be invoked whenever one experiment is to be 
compared with another, with computation, analysis, or with 
the "truth." 

It frequently occurs that inclusion of all of the instrument 
calibration uncertainties yields such a large value for 8RN that 
the experiment seems doomed from the beginning. In such 
cases, the only recourse is to reduce the Mh order uncertainty 
intervals by detailed calibrations of the most critical in­
struments. An important implication of equation (5) is that 
the uncertainties with large effect on the output are easy to 
identify, and should receive the most attention. At each stage 
of improvement, any term smaller than 1/4 of the largest term 
can usually be ignored. The same remark applies to 
calibration uncertainty, as indicated by equation (7). 

When the predicted uncertainty interval 5RN has been 
reduced to an acceptable value, then the experiment may be 
tested against some known "true" values. If the experiment 
returns the " t rue" value within ±8RN, it may be considered 
qualified for data production. If not, then further develop­
ment is indicated. There are few "true" values known. The 
principal sources of " truth" are those described as Basic 
Principles: 

The Rate of Creation of Energy = 0 

The Rate of Creation of + x Momentum = gcLF+x 

The Rate of Creation of Mass = 0 

The Rate of Creation of Entropy ^ — 

Execution of a mass, momentum or energy balance on an 
apparatus, without knowledge of the expected Mh order 
uncertainty, is an essentially useless enterprise. To reach any 
conclusions, one must have the ability to assess the 
significance of the difference between the observed value and 
the expected value. The Mh order uncertainty analysis 
provides that ability. 

In the absence of an applicable Basic Principle, one is 
frequently forced to use a secondary check: a baseline ex­
periment. A baseline experiment is a data set which has so 
well stood the test of time that its validity is accepted by most 
workers in the field. Knowledge of the Mh order uncertainty 
intervals for both experiments is necessary before the 
significance of any difference between the observed and 
baseline values of R can be assessed. 

Uncertainty Analysis on Computer-Based Data-
Reduction Programs 

It is impractical to execute an uncertainty analysis 
analytically for any but relatively simple cases. Complex data-
reduction programs may involve many corrections to the data 
and use implicit forms or table look-ups or numerical in­
tegration within the program. In such cases, the uncertainty-
analysis program might be larger than the main program-
certainly an unacceptable burden on the experimenter. 

It is a simple matter, however, to do uncertainty analysis on 
any computer-based data-reduction program, no matter how 
complex, if the estimates of the Sx, are provided as data for 
the program in addition to the usual data. If the main 
program is regarded as a subroutine, it can be called by a 
Jitter Program, which sequentially indexes each input bit and 
computes the resulting contribution to the uncertainty in R. A 

Jitter Program need not be very complex, since it simply 
controls the main data-reduction program. To illustrate this, 
a typical Jitter Program is shown in Fig. 3. This program has 
been used on a programmable hand calculator and illustrates 
the compactness of the Jitter Program approach. The flow 
diagram would be the same for any computer or calculator. 
Even a simple hand-calculator can handle a data-reduction 
program involving up to ten variables. The central argument 
is: 

^ i h m (*«+*-*«) (8) 
ax, w,-o\ Axr, /***,-

In operation, the program first calculates the best estimate, 
R0, using the input data provided. Then the first variable, xx, 
is indexed by a small amount, exu and a new value, Rit 

calculated. Using the difference (Rt -Ro), and the value of 
ex{, the value of dR/dxt is calculated, and the contribution to 
bxx is found from (dR/dx^bXi), using the value of 5x, 
provided. Either forward or central difference estimators of 
dR/dXj may be used. This process is repeated for each 
variable, and the contributions squared and accumulated. 

The values of the ex, may be taken arbitrarily small, in 
which case the best estimate of the true value of the dR/dXj 
will be found, as in the case illustrated in Fig. 3. On the other 
hand, it is often justified to use ex, = &c,-. 

Once the Jitter Program has been installed, it is a simple 
matter to obtain the Sensitivity Coefficients, the individual 
contributions to the overall uncertainty, and the relative and 
absolute uncertainties in the results. 

x,-Sensitivity Coefficient = dR/dXj 

^-Contribution = (dR/dx^SXj 

Relative Uncertainty = 8R/R 

Absolute Uncertainty = 8R 

Such a program need only be devised once and can then be 
incorporated in each data-reduction program as a routine 
addition. Graphics output with error bars and warning flags 
triggered by high uncertainty values are obvious extensions of 
this capability. They advise the user that the experiment has 
moved into a region of variables producing unacceptable 
output uncertainty (as often occurs at some point). Without 
this procedure such regions are easily overlooked. 

Defining the M h Order Uncertainty in a Measurement 

The intent of the Mh order uncertainty esimator is to ac­
count for both the uncertainty of the calibration and the 
stochastic uncertainty due to unsteadiness. 

Consider the reading of a single instrument. It is presumed 
to fluctuate, over some observation period, about a mean 
value which may or may not be correct. The reading can be 
described as a function of time, as: 

Xj=x*Fjf(t) (9) 

where 

x* = the " t rue" value, presumed constant, 
Fj = a calibration factor of the instrument, so defined 

that x=x*Fj, where x is the mean value of a large 
number of observations with they'th instrument, 

f(t) = a temporal instability function, having a time 
averaged value of unity, 

Xj = The time-varying indication of they'th instrument. 

Consider now a single observation of the y'th instrument -
the z'th observation: 

xiJ=x*FJf(i) (10) 

where / ( / ) =±the value of f(t) at the instant of the fth ob­
servation. 
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The relative uncertainty in x,j can be written formally as: 

It remains to show that this form has physical significance, 
and utility. 

The functions Fj and / ( / ) can each be regarded as having a 
mean value which is 1.000, with normal distributions about 
this mean. Let 5F, and bf(t) equal twice the standard 
deviations of these functions. It can be safely assumed that 
instrument manufacturers describe the mean calibration of 
their instruments as well as possible, and that there is a 
normal distribution of the individual calibrations around the 
mean. It is also apparent that the observer will make every 
effort to record the mean value of a fluctuating sequence of 
values, so t h a t / ( O , an average, will have a value of 1.00. 

If these assumptions are correct, then &F, stands for the 
uncertainty in calibration of the individual instrument used, 
and 5f(i) stands for the temporal component of the recording 
uncertainty. 

Equation (11) thus accounts for the overall uncertainty in a 
single observation from a single instrument. 

Rearranging and interpreting the terms shows the basis for 
the current treatment of the Mh order uncertainty estimate 
for single-sample experiments: 

M(*4)!+(*«fr)2r 
dF 

where x-,j —- = the uncertainty in the value of Xy caused by 
v/ the uncertainty in calibration SFj/Fy, i.e., 

Hf("\ °xucd' 
and xhJ —— = the uncertainty in the value of xLj caused by 

*{1' the uncertainty in the temporal instability 
term; i.e., &cu . 

This can be written as: 

5xiJ=l(5xiiCal)
2 + (8xi,1)

1}W2 (13) 

Once again, it must be emphasized that &C/>cal is hard to 
identify. Most manufacturers are reluctant to describe their 
product in such terms, and frequently the experimenter must 
simply estimate this term, based upon experience or, at best, a 
few hints in the manufacturers' literature. As already 
suggested, use of such estimates is better than total lack of 
uncertainty analysis. 

Applications for the Comparison of Experiment and 
Computation. Ideally, all the experimental results used as the 
basis for model formation and comparison to computation 
would be accompanied by reliable estimates of 8RN. In 
reality, this is not the case for most existing data sets, partly 
because of the difficulty, in the past, of doing the analysis for 
complex experimental programs. Given the methods of this 
paper, reliable estimates of &RN become feasible for future 
"record" experiments and are strongly recommended as a 
criterion for acceptance of such future "record" data. 

When reliable estimates of 8RN are known, assessment of 
the degree of agreement between different data sets and 
between experiment and computation becomes both easier 
and more clear-cut. Two data sets "agree" when the data do 
not differ by more than the root-sum-square of the 8RN for 
the two experiments. The 8RN will in general be different for 
the two experiments, owing to different instruments and 
reduction programs; but when the two are roughly the same, 
disagreements larger than 1.4 8RN indicate some difference in 
the experiments, or the presence of an uncontrolled variable 
in one or the other experiment. When one 5RN is significantly 
larger than the other, disagreement beyond the larger value is 
the relevant test. These remarks apply point by point wherever 
the 5RN are known. For points where agreement is found, one 

can conclude that the results are consistent, and that the 
presumed correct value does not differ from the mean of the 
two sets by more than the root-sum-square &RN for the two 
data sets. 

When there are more than two data sets, the same principle 
can be extended. If, in a group of seven data sets, all the data 
lie within the uncertainty band found from the square-root of 
the sum-squares of the 5RN for all the sets, then a correlation 
band has been established. If two or three of the sets have 
smaller bRN than the others, and agree with each other within 
that uncertainty, a tighter correlation band can be formed. 

Comparisons of computation with experiments could 
proceed on the assumption that differences between com­
putation and experiment that exceed the value of 5RN for the 
data are attributable to approximations in either the model or 
the numerical procedure. 

When only partial or rough estimates of the 8RN are 
known, the principles remain the same, but it becomes 
necessary to use judgment case by case. 

Another use for the methodology of this paper is in ap­
plication of criteria for evaluating data sets. As noted above, 
the data can be tested against known theory, as for example a 
check of the right- and left-hand side of the momentum in­
tegral equation for shear layers. Since the measurement of 
some of the terms in the momentum equation typically have 
large uncertainties, it would be easy to conclude that the flows 
were three-dimensional, when in fact they were not. 
Specifically, disagreement by an amount less than the value of 
6RN must be regarded as agreement, even though the 
disagreement might look large. The methodology of this 
paper can be applied to make such judgments both more 
specific and more meaningful than has been possible in the 
past. 

Conclusion 

Uncertainty analysis is a powerful diagnostic tool, useful 
during the planning and developmental phases of an ex­
periment. Uncertainty analysis is also essential to rational 
evaluation of data sets, to comparison of more than one data 
set, and to checking computation against data. 

There is no single value of uncertainty which is appropriate 
for all intended uses. The predicted uncertainty in a result R 
will depend upon the number of terms retained in the analysis, 
and this, in turn, is dependent on the end-use proposed for the 
uncertainty value. 

The concept of "replication level" is introduced to aid in 
identifying which of the candidate terms should be retained in 
an uncertainty analysis. 

Three conceptual levels of replication can be defined: 
Zeroth, first, and Mh order. These levels of replication admit 
of different sources of uncertainty: 
Zeroth Order: 
8 Includes only interpolation uncertainty. 
8 Useful chiefly during preliminary planning. 
First Order: 
8 Includes unsteadiness effects, as well as interpolation. 
9 Useful during the developmental phases of an experiment, 

to assess the significance of scatter, and to determine when 
"control" of the experiment has been achieved. 

Nth Order: 
8 Includes instrument calibration uncertainty, as well as 

unsteadiness and interpolation. 
9 Useful for reporting results and assessing the significance 

of differences between results from different experiment 
and between computation and experiment. 

The basic combinatorial equation is the Root-Sum-Square: 

. „ U &R \ 2 ( dR \ 2 ( dR \21W2 
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The process is easily adapted to computer-based data 
reduction programs. A sequential jitter package can be 
written in standard form, which uses the existing data 
reduction program to execute the uncertainty analysis, ob­
viating the need for a separate analysis. The additional 
computing time is usually not excessive. 

Acknowledgments 

' I appreciate very much the thoughtful and challenging 
conversations I have had on this subject with Steve Kline, of 
Stanford, and Bob Abernethy, of Pratt and Whitney Aircraft 
Co., over the past few years. Their grasp of the problem 
and willingness to discuss these ideas helped me find the 
language to put this work in context and, hopefully, express it 
more clearly than in earlier renditions. I would also like to 
thank Frank White, of the University of Rhode Island, for 
arranging the round-table discussion at the ASME Winter 
Annual Meeting which got all three of us together for a truly 
fruitful discussion. 

D I S C U S S I O N 

R. B. Dowdell1 

There is a lot of uncertainty on uncertainty analysis but 
some analysis is better than no analysis at all. To the average 
engineer or experimenter, the principles set forth here and in 
the author's references may seem obscure and complex and 
too difficult to deal with. However, as the author ably points 
out, uncertainty analysis is an invaluable tool in the planning, 
development, interpretation and reporting of scientific and 
engineering tests and experiments. It should be a part of every 
accredited undergraduate engineering curriculum and taught 
with the same methodology and nomenclature. But how can 
this be done when we find such a wide discrepancy between 
the treatment in the authors paper and that in his references 
[4, 5, and 6]. 

This difference, of course, lies in the treatment of the bias 
or fixed errors. The author admits to the existence of such 
errors but contends that they can always be calibrated out or 
made negligibly small when compared to the random errors. 
The author's references [4, 5, and 6] carry along the bias 
errors throughout the analysis and then combine the bias and 
random errors for the final uncertainty figure. The actual 
method of combining these two types of errors is of no 
consequence since one has an estimate of each. 

While the idea of reducing the fixed errors to a negligible 
size is certainly enticing, in the vast majority of engineering 
tests and experiments, it is not practical nor economical. 

Certainly the economic side should be emphasized. In most 
cases it would be possible to reduce bias errors to a negligible 
amount if one were willing to spend the money and time to do 
so. This would usually require laboratory precision in­
strumentation such as interferometers to measure length and 
oscillating crystals to measure time, and all the time that goes 
along with setting up and using such instrumentation. 

In the majority of industrial experimentation and tests, and 
even in most university laboratories this is not the case. The 
instrumentation purchased is usually of an industrial quality 
and installed and operated within reasonable time constraints; 
dictated by economics. This type of instrumentation almost 
always has some bias or fixed errors and normally the 
procedures of installation and use can introduce additional 
bias. 

Professor, Department of Mechanical Engineering, University of Rhode 
Island, Kingston, R. I. 02881. 
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Thus an analysis of bias or fixed error is fundamental to 
any uncertainty estimate. I can find no fault in the author's 
treatment of random errors other than in the real world they 
would become mixed with bias errors. 

I like the concept of his jitter program and plan to use it as 
soon as possible. 

R. B. Abernethy2 

Having reviewed drafts of this paper over several years, I 
am pleased and honored to have the opportunity to comment 
on it. Professor Moffat has made a considerable effort to 
describe his approach to uncertainty in a clear manner. He has 
removed much of my early confusion about his techniques. I 
appreciate the hours we have spent together discussing our 
disagreements and agreements. I would like to use this 
discussion to briefly describe my conclusions, opinions and 
remaining areas of disagreement. 

There is currently an enormous effort to arrive at a single, 
simple uncertainty methodology. For those of us that have 
argued the issues for decades, it seems like a miracle that 
suddenly we have a number of national and international 
standards near approval that share a single, simple 
methodology. These include ASME [5] and [9], S.A.E. [11], 
ISO [20]. These draft standards are updated versions of 
earlier documents, ISA [18], USAF [6], and JANNAF [7]. I 
am sorry that Professor Moffat's approach is not consistent 
with this methodology although he has made an effort to 
bridge the g"p. However, Professor Moffat and I believe that 
given the same experiment, our uncertainty analyses would 
produce the same result. 

I strongly endorse Professor Moffat (and Professor Kline's) 
plea for more pretest uncertainty analysis. This allows for 
corrective action to reduce unacceptable errors before the test. 
This is a major point in Professor Moffat's paper. 

The "zero order to Mh order replication" of experiments 
initially confused me. As I understand it now, this is an ap­
proach to identify and estimate all the sources of elemental 
errors. I believe it is more complex than the approaches 
described in the methodology we endorse, but it certainly 
emphasizes the need for a complete identification of all 
errors. Statisticians would use an analysis of variance to 

2 Pratt & Whitney Aircraft, West Palm Beach, Fla. 33402. Mem. ASME. 
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