Describing UNC

INTRODUCTION

\"ER YONE who uses the results of experiments must
sooner or later ask, "How reliable are these results? To
how many figuies can they be depended upon?””  In most
s the cxpcrimcniér- ceies ro eliminace all errors from his re-
jes, bur we all know from experience thar this happy goal is
Therefsre the honest experimencer Must pro-

the reader with some. measure of the reliability of the re-

: From :h:‘point of eirw -of reliability estimares, experiments
2} inro two. overlapping’ categories—single-sample and mul-
ple experiments.  Hdeally,
B mecagarcinonts cnough times using enough obscrvers and enough
=+ Ui veric insCrUMEDs SO that che reliability of the resules could be
fesurcd by che use of stacistics. - Experiments in which uncer-
atics arc evaluaced by such repzrition will be callzd mulriple-
sropls experimcts, The estimarion of ‘rzliability in mulri-
gé-sample experiments has been the subject of many publica-
FEos. ln,parriqular-. the Ameri
Bz publishcda manual (1)} cov
ia contrulicd multiple-sample experiments.
Fween available for twency years and cat
ghe prescoracion of the type of data covered. .
=it Unforrunaccly,
4izal ro cstimate all of ¢
assion. If for no other reasons, the rime required and the costs

" of operation and personncl are too great to permir repetition of
: al aspeces of large-scalé experiments. Experiments of the
£y e 1o which uncerraintics arc not found by repetition will
b called single-sample experiments. :

There is almost nothing in print on methods for the descrip-
Y ¢ion snd analysis of uncertaintics in single-sample experiments.
“$he aurhors are not only unaware of a standard on the subject,
" bast are unawarc of any treatment reinforced by data covering an
appreciable variety of experimeats.  Perhaps as a resule of chis
saany cngincering colleges hardly mention the subject in their
andergraduate curricula. The engincering literacure io turn re-
Bects this lack of instruction. Even a few of the society test
gudes which are scrupulous in ocher 'matters appear 0 be in-
goerecy in the calculation of uncertainties. For this reason the
suthors hope chat this presentation will seart discussion of a
waible standard, thar it will stimnlare research to provide
my needed data, and that it w. il cucsaiage educarors to re-
wiew the adequacy of the rreatment in the_r 1ndergraduarc cur-

ZR5 The scope and, consequently, the impcitance of single-
gample cxperiments is much greater than at first might be
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d can serve as a standard for

in most engin-ering cxperiments it is noc prac-"
he uncertainties of obscrvation by rcpe- )

1953

imagined. Thisis due to tour factors ali of wihuch tend o jessen
the effect of repetition. Conscquently, many cxperiments chac
appear to be multiple-sample arc acrually in parr single-sample
expcriments. ’

The firse of these factors was demonstrated by Pearson {23
who showed that obscrvation of scales by a single observer, in
general, did not give consistent resules even though all extrane-
ous variables appeared to'have been removed. In parcicular,
he showed that even a sampleof 20 or 30 readings might have a
inecan value significantly different from the true mean as_estab-
}ishcd by 500 or more sampl in cthe same paper Pearson also
demonsirated thatr observarions of scales by difierent observers
are not necessarily indepzndent due to some unexplained causes

“as well as to number bias, the tendency to read consisceetly high
ot low at certain peints. Tuemmler 733 also has noced an ap-
_parent difference between the resules of various laboratorics
using equipment of rthe same design to perform the same tests.
The last, and perhaps the most significant faczor, since it usually’
gives risc to the largest errors, is thac jnstraments of different
designs, in general. will nor give rhe same resules. - Hence,if a
sec of obseivarions, some ecror

Csingle instrumene is used fora
which 1s 1aherent in the iustiuinent will be sampled only
no matter how many times cach readiag is repeated. B

In single-sample experiments it is inevicable that the state-
ments of rcliabi]ity'will'bc based in past o0 esrimaces. - This
must be true since by definition statistics cannot be applied 1o 21}
of the crrors.  Very often these estimaces will bz no betrer. than
,%=50 per cent of the uncertainty; - but =50 per cenc may Be €n-
‘tirely satisfactory, particularly if the uncerraincy is of the order
of a few per cent or less of the original data. -

A complete method for treatmene of uncertaiacics in a gives
experiment must provide the answer to three questions: What

“is a rational way for estimaring and describing che uncerrain
ties in the variables2  What is 2 proper methed for calculating
‘the propagation of thesc uncertaintics into the resulis? What
jmust be presented.in 2 report to give a reasonably com plete buc

iconcise picturc of the reliability of the experiment2

ancs

oncs,

H .
DEFINITION OF TERMS

- Before procecding, let us define certain terms more carefully.
By “‘unccrrainty’’ we mean 2 possible value the error might
'have.* For a single observation, the error, which is the dif-
ference between the true and observed values, is 2 certain fixed
.number. Buc the uncertainty, Or. what one thinks the error
;might be, may vary considerably dep=nding upon the particular
 circumnstances of the observarion. *'Variable' will meaa 2 basic
;quantity obscrved directly in the laboratory as opposed to the
s “result’’ which is obtained by making.corrections ro or calcu-
‘lations with the recorded values of the variables. Therecorded
" values of the variables will be called “'data.’”” In 2 few cases,

of course, the results wili be the same as the data. ‘"Propa-
: gation of uncertainty”” will mean the way in which uncertain-

ties in the variables affect the uncertainty in che results.  The

4 This imporrant distinction between error and uncertainty is be-

* lieved due to Airy (4).
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and frequency-distriburion

‘terms standard deviation, mean,
pted statistical mean'ngs as

funcriog will be used in the acce
given for example by Hoel (5).

.. .. UNCERTAINTY DISTRIBUTION .

In order to arrive ar a rational method for describing the un-

* cerrainties in‘the variables;itisnecessary to discuss the sources
and nature of the uncertainties. There are many types of errors
which can contribute to the uncertainty in each variable.

One useful classification of these errors is as follows: Ac- !
cidental errors, fixed errors, and mistakes (6, 7). Accidenral [
CcrLoLs aic ihose '-4.1!1'{-3 ciiuls which causc lcP;‘.A(L;L} itﬂ.dins» Lo
differ withour apparent reason. Accidental errors arise from in-
strument friction and time lag, personal errors, and many other
causes. Fixed errors are these which cause repeated readings to
to be in error by the same amount without apparent reason.
(If a reason were known, presumably a suirable correction
would be made and the error eliminated.) Fixed errors afise
frorm such causes as a burr on the lip of a Pitot tubs or a lever
arm of crroneous length. Mistakes are completely srroncous
readings of scales, watches, and so on. Each of these types of
errors will be considered in turn. L

Accidental errors can be studied by raking repeated observa-
tions of the value of a“variable. Such a sequence, of recadings

various patterns, some of which are shown in

v may fall into
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" F16.1 EXPERIMENTAL OBSERVATIONS

“ Fig. 1. The scquences shown in Fig.'1(4, §) are uncontrolled or

.- inhomogencous; there is do teHing-what the trénds are or how
. farthey will'go. - The sequence ¢f Fig. 1(¢) is more predictablie;
even though there'is a viriation from one reading to znother,
the readings all tend to fall in a given region. Such a’sequence
.is called homogeneous. The experiment from which it was ob-
tained is said’'to be controlled.}} If a very large number of data
are obtained, a. frequency-distribution function can be cou-
structed ‘to describe them. The defining characteristic. of the
frequency-distribution funcrion, f(»j, is that the fraction of
values lying between » and » -+ dv is f (v)dv. The distriburion’
funcrion corresponding to Fig. 1(c) is shown in Fig. 2. Acci-
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dental errors ﬁsually have a frequency distriburion similar to
that of Fig. 2, in that small errors are more likely than large
ones and there is no definite upper limit to th= possible size of an

error. ) :
The frequency distribution for accidental errocs has been as—

sumed to be normal, or Gaussian, by many authors. While this
may be true in many cases, it is not true in all. Cases of dis-
tribution functions for accidenral errors which are non-normal

- tistical concepe of a-confidence-limic=- - ---

. Error eXists.

precision porentiometer to measure furnace temperature.
! -,

in form (2, 8) et al:, are now too wydl documentce
that all such distriburions will be normal: :
In the case of a small number pf observarions, it is no long.

possible to describe the discribution funcrion exactly. Yer jc
still possible to make some precise operational Statements abor
the characteristics of the distribution function, using the sc=
=z

~No measure of the scatter of the errors can be obtained from -
single-sample experiment. Consequently, the cxperimente
must rely on his past experience and judgment. The best hecar
do is make a statement of what he thinks would happen if the
SRpeLitlicie wercicpedted an judefinitely large nutnber of ties
It would seem natural to make such a statement in che langua ¢
of probability and statistics. Bur sratistics are properly ba.sfd
on calculations with measured numbers, while statements Te-
garding single-sample experiménts must be based on what on
thinks these numbers will be. Hence a statistical désci-iﬁti o y
would be misleading. Therefore, the term "uncertainty d_i:f
tribucion’” will be used instead of frequency distriburion. e

The uncerrainey discribution is the distribution. of erroTs
which the experimenter believes would be found in a given
variable if the variable were sampled a greac Mmany times T};c
uncertainty distriburion caused by accidental errors COI;Id' bc
measured by repeated readings of the variable in question. THe
uncertainty distribution then would be exactly the same as tl;é:
frequency distribution. Thus che existing frequency discribay.
_tions for accidenral errors can be used to derermine what tiye
ls:'hapc of uncertainty distributions for accidencal errors s}::'ouldv

e. : : T
The few available frequency discributions indicate thar thc
uncertaincy distribution caused by accidencal errors should
h:s%vc 2 shape simijlar to the frequency discriburion shown in
Fig. 2. - Thercfore its general characeerisrics are also the sam._c"'r
ga‘mcly, small errors are more likely than large errors, plus an J
minus.ersors are abour equally likely, and no finire TRaximurmn

«.- A close examination of fixed crrors shows that the. clagsgs
ficarion of errors as-accidental and fixed is really » rcl:iti\;»'v
matter. As an'cxample, consider the use of 2 thcrfnoc:onpl& an:} '
B
rors may resule from: variations in remperature wichin the fae-
~nace both in time and space, from the effect of the thermo-:
couple on the local temperature, from incorrace calibration ofl
;hc wire or potentiometer, from deterioration of the wire or
drifc of the potentiomerci-bartery calibration during use, and
from personal errors in balancing and reading the potcut’iom- .
An cxamination of these errors shows that. which ers
rors are called fixed and which are called accidental d'cpcnd;
largely on the scope of the experiment. If onc observer, usin g
one thcrm0couplc and onc potentiometer, were to make read-.
ings of temperature at one point, then almost all of the t:troi—sv’:'
must be considered fixed even if the reading were taken many ‘
times. However, if several observers, using several different. -
types of temperature-measuring devices, measured . the tcm'-'i"
perature repeatedly at a given point, almost all of the “errors
could be called accidental.. If the same type of apparatis musg’
be used by all observers, a fixed error may remain." . #
_For example, if only one thermocouple installation could be
used in the foregoing experiment 20 error due to the distortion
of the temperature ficld by the thermocouple will not be sarg. |
pled. Such errors can be estimated by theoretical means, and™”
the uncertainty in these calculations can be thoughrt of as ’hav-v
ing an uncertainty distribution. Thus the fixed errors have ag"
uncertainty distribution which can be visualized in terms of

cter.

calculations -and the use of more instruments and observers
Consequently, the uncertainty distribution developed in"¢op:
nection with the uncertainties resuleing from accidencal errors

T



Gxed errors is also believed to be similar to Fig. 2.

. Mistakes are those errors which result from com pletely er-
roncous readings of watches, scales, and so on..  These errors;
in genefal, will be discarded by a careful observer if they are

large ones, posmvc and negative errors arc about equally likely;

and no finitc maximum error can be stated. Although'the ct="

rors tend to occur in discrete steps, they do have an uncertainty
" distribution which can be visualized in terms of the use of
many observers and scale intervals.

The entire error in 2 given reading due to all of the causes
mentioned has no discribution function. It is just 2:ceftain
finite aumber. On the other hand, the catire ‘unicertainty or
lack of knowled ge about the value of a reading can be described
comp]ctcly in terms of an unccrtamty discribution since cach of
its components can be described in this way. However, there is
insufficient knowledge of ‘uncértainties to warrant the use of 2
complctc uncertaioty’ distribution for cach Variable. In addi-
rion, the distriburion wi uld be too cumbersome for routine usc

and would require dxﬂic Ieif no: im possi ible mathematics for the “-
calculacicn of the unegrtainties in the results. Some short-
hand notation is nceded which is consistent both with the con- .

cept of che unccrtamty distribution outlined and with’ the statc .
of the cxpcrxmcntct s knowlcdgc of the unccrtamncs and yct
whtch is sunplc cnough for routmc USC. 5 .

- UNCBRTAIN‘I'Y INTERVAL POR A VABJ.A.BLB

A san;factory notation for thc unccrta.mcy ofa vanablc must
~include a statemenc of the Bést estimate of the truc valuc as well
as a statement 2bout the magmmdc of the error in the estimate.
The béest estimate.of the true’ valu- is usually described by givin g

_the mean of the rcadmg& ’ :

~ Asimple but adcquz.tc dcscnpnon of thc error in the estimatz
“'is more difficult te frame.  In the casc of frequency distributions,

the statistician often uses the standard deviation. Bur usc of a

standarddeviation todescribe uncertaintics has twodistince dis-

advantages. (@) For ncarly normal distributions, it describes ai

interval such that the odds arc approximaccly 2 to 1 that the:

-error in a pzt#ucular reading will lic inside the interval: How-

ever, the cxpérimenter usuzlly waats his odds to be at lecast 10
or 20 to 1, rather than'2to 1. (b) It would be misleading to use

" the term stmdard deviation which connotesa roo:—mcan-squarc :

value calculated from accual imeasured numbers bccau.sc in
single-sample experiments the numbers must be estimated.-

Another measuré of scatter somctimes cmployed is the range.

- . This mecasure has been cmploycd in some of :hc existing litera-

turc under the name of “‘maximum error.”

muin uncertainty.”” This concept may have meaning to a mapu-
faccurer who must achicve complcte interchangeability of parts.
In critical manufacturing cascs 100 per cent inspection is often-
used to force a maximum error.® But in the case of experimeatal

one of the great number of causes for error in a given variable -

ﬁnal uncertainty distribution also must.have long tails.
: cvcry sampled distribution known to the auchors has long rails,:
it is most uuhkcly thar any uncertainty distribution for the en-
“tire crror in a given variable can be described properly by a
maximum uncertainty. One might argue that therc is a maxi-.
mum value of the uncertainty which the error will never ex-
-ceed; but cven granting this, a rigorous interpretation of the

5 Even in these cases we know from experience that assembly some-
times fails. An enlightening discussion of this subject mcludmg cost

effects is given by Pike and Silverberg (9).

i tha.t the efror is less than s :

In the present .
nomenclature the maximum error would ‘be callcd the ""maxi-

" uncertainty 100 per cent inspéction caanot be applied. If just

has an uncertainty distribution with very long rails; then the-
Since’

maké the'cxpcnmcut unacccptabl

‘Another method of notation” for describing

which is better suited for descriprion of uncertaiary dise rib

tions is to specify an interval based-on certain odds: - :
For example, the distribution of Fig. 2 indicates tha.-t el

" very largel Cons:qucntly, “small errors are more likely tham—odds-are-roughly 20 to-1 that-any-given reading will lie writh.

=4 of the mean of the distribution, Convcrscly, if onlss ¢}
value of a single reading is known, the position of the mean ca
be described by * 20 to 1 the mean of the distribution lies wr jchj
=4 of the rcading.”’ The odds the experimenter would be wi]
g Lo wagel ol Lu estimate of wher= the tone value lles wroul
depend on how large the interval was made. | :

In the case cited, for example, hc would be wxllmg to wrage
only 1to 2 that the true value lies within =1 of a given rcadxf
but he would be willing to ber 20 to 1 that it lies wichin =<4, 5
100 to I chat it lies within =10.. This method of dcscr1p(:10n i
flexible in that the experimenter can set his odds to conforr
- with the standards of reliability required by any given exper;
ment. A complctc description of the uncereainty discributio:

could be given by the statement of the odds: associated w1th al
poss:bk. intervals.. Bur a statement of just one interval is aj
that is )usnﬁcd by our limited knowlcdgc and it does’ prov;dc
rcasonable index of the reliabilicy. - .

Considering the various factors )ust d;scusscd the au’hor
belicve that a- good concise way. to describe the uncertaine ¥ i
cach variable is to spcafy the mean of the readings and an ug
certainty interval based on spccxﬁcd odds chrescnun g th
‘mean by = (arithmetic mean of Obscrvcd va.lucs) the wunces
t:unty interval by w, and che odds by 5, this becomes. .

! m:l:w,(btol)...........,.'.b.-.‘.ri

As an /cxz.mp’c one might gwc
rcssurc = 502 = 05 psm (z_o to D

Thxs staies that the bcst valuc for thc prcssurc is bchcvv-d to’ b
50.2 psia aad the odds.are 20 to 1 thae the true valuc lies withii
=0.5 psm of: this best ¢stimace. - The. uncersainiy interval
which is denoted by w, is not a vafisble but a fixed value sc
‘lected so thac the cxpcnmcntcr would be wxllm g to  wagerbto.

Determination of the .actual valué of the unccttaxnty lntcrva
based.on given odds is onc .of the jobs of. the expe: imenter
As alrcady poted; at lcast some of these intervals wdl have &
be based on cstimates rather: "cxpcnments, and theé csti
mates often may be no betrer than” =30 percent.’ Despitethis .
the experimenter owes it ro himself and to. hxe readers to . g
ahead and do the best he can; no one ‘elscisin an equally goo«
position ro make the rcqmrcd cstimates which are cssennal T
rational design and ro interpretation of the rcsults NI

Such estimates arc, of course, not pute gucsscs F?ctors sucl :
as instrument ba.cklash scnsntwlty, and fluctuation, as well a
the accuracy of the basic theory of operation of the i instrument
sometimes can be accounted for.” Cahbrauon ‘of the i mstrumcn
against some type of standard is somctimes available; and cx
periénce based on prior cxpcnmcnts or auxxhary cxpcumcnt
can be used. This part of the sub)cct is covered already in th
standard textbooks on instrumentation and is too detailed: iy
pature fo: adcquatc trcatment hei Readers dcsu‘mg furthe

information should see (6, 8; 10) and other texts, manufaé
turers’ catalogs, and the literature of their specialey: . .
Equation; 1] togcthcr with the foregoing discussion g;st
mctho& bytwhich the cxperiménter can describe the uncer
taintics in aach of the basic variables in what the a.uthors be
lxcvc to be 2’ ‘sufficiently accurate and simple manner for routin
It is then necessary to dctcrmmc how thcsc unccrtamtxc

propa.gatc into the rcsults




. UNCBKTAINTY INTBRVAL IN THB xssum'
Lcr thc resule R be a functi "n independent variables,

Ve

S R=R(m ) 2]

Vi, V25 - -

" For small viriitions in the variables, this relation can be ex-

presscd in linear formas -

o . >R -
SR == —25501-{- 5uz+ Seeaiaa. 3. O7n (3]

Th= uncertinties in the variables »; are represented completely

by an uncenainty distribution but can be adequartcly described

by uncertamcy intervals w; based on certain odds.  Therefore
we must examine how to find the uncerrainty interval for the re-

sult wj based on-essentially the same odds as the intervals for

each of the variables. Certain theorems of statistics concerning
“the way in which Ircqucngy distributions combine will be help-
‘ful in Ainding a reasonabl¢ va}uc forwp..

Theorerrz 1. If R is alinear function of 7 independent variables,
and if the maximum devyiation of the ith variable from its mean
is (=89 Dmsx then the mzximum deviation of R from its
mean valueis given liy:%- i

!
ORmax =

Equa.uon 4] mxght bc uscd asan approx;manon for calculating -

“the uncerraincy interval-in the resule b-- simply -substicuting

w, for v, Thls y1clds
(R | |2R om
we = Z)vl anl“l |a—uzu, -l»-k,..‘.-l-\g;:{ w,‘/l {5]

This equartion will be rcfrrrcd tc 25 the linear ;qnanon
cmployed, the odds on the uncertainty interval in the resele will
be much higher than the odds used in. the variables. This is be-.
cause of thefact that the trrorsin cach variablecan have a range
of values, and it is quice unlikely that ail of them will havc
the most adverse valuesat che same time.

Theoremz 2. If R is alinear function of z independent variables,
cach of which is distributed with a standard deviation o;, then
the standatd deviation of Ris given by

[( ) a2, + (—-53-)2 o'"-» + ..... —l—- (bR)bvn.)’ a",,]vz
o/ \ Oy ) I

o : (6]
We haVc seen, howevcr thar the bcst measure of unccrtamty

is neither the maximum value nor the standard deviation, but
some interval based on certain odds. For the special case in

5 which the variables are distributed normally the distribution of
% the resule also will bc normal and thc followmg thcorcm ap-

=
g

iy

lies:
2 Theoren 3, IfRisa lmcar funcuon of nindependent vanablcs

:zch of which is normally distributed, then the relation between

th&.interval for the variables w;, and thc interval for the resule.

wﬂi

gﬁhxch gives tbc same odds for cach of the vanablcs and for
the . Do

tcsult 1is

Equatid [7] might be used directly as an approximation for

caleulating the uncertainty interval in the resule.
will be referred to as the sccond -power equation.

[

lfiris.

Equation [7]

Examples were calculated to compa.tc the accuracy

tions. .
Thrc‘_ d:ﬂ'crcnt frcqucncy-dlstnbuuon functxous were choscn

- one normal;-one-corresponding-to-one wave length-of a sin&- -

curve, and the lasc corresponding to an isoscéles triangle. Since
the latter ewo distributions have finite limits, and are considera—
bly less normal than the distributions usually considered i
connection with uncertainties, they constitute a severe test of
rthe generality of the s2cond-power equation. Odds of 9 o 1
19 to 1, and 99 to 1, were chosen as being of interest in experi-~

,mcntal engineering work. The mathematics employ=d in cal-

culatmg the exact distribution f\mcuon of the rcsul: are out—
lined in the Appendix.

For Table 1 the resulr was consxdcrcd to be proportional to
the sum of two variables. According to this table, the second—
power equation gives odds nearer tc the desired odds in every
case. The second-power equationipredicts the uncertainty in-
tervals for the result to within %10 per cent of the correct
value, while the linear equation p'"t:dxcts uncertainty intervals
varying from the correct value by as::nch as 40 per cenc.

The difference between intervals given by the linear and

second-power cquations increases as the square root of the
number of varvablcs xf cach vauabsc has a‘*ouc cqua.‘. effect on

the resule. ERE - -

Fot Tablé¢ 2 the rcsult was takcn £o bc propornonal to the’
sum of an infinite number: of variables. This'table shows even
more clearly the superiority of the :ccoqd-powu equacion. The

" odds given by the second-power equation for the upgertaiaty in-

terva] in theresule are still reasonzble while the, linzar equatian
gives infinite odds. The crror in the interval introduced by use

. of the second-power cquation increases to na more than 15 per

cent, while the error due' to usc of the ]mcar cquation bc-coxrzc..
infinitc.. Since the statc of kaowledge of unccrumt.y intervals:
for the variables is of the order of = 50 per centy it seems en-
tucly reasonable to use the second-power cquation fur thc cal-
colation of the uncertainty interval for the result. :
‘The sccond-powcr cquation, Equauon [71, is‘als6-of unpor-
tance in planning instrumentation, “Jt apphcs in chis'sense both
to single- and multiple-sample expétiments since statistics can—

"notbeapplied toa multiple-sample experimentin advance of the -

tests. It shoves rhat uncerrainties in indirdual variables add
into tire uncertainty in the result by the square. (,onscqucntly,
the effect of large uncertainties in the variables is cmphas:zed
and a2 given reducrion io a large unccrtamty is far mote nnpor—
tant than the same numerical reduction in 2 small uncertainty,
The sccond-powcr equation is thus a'useful tool in the selection
of instrumentation for cxpcnmcnts = S

EXAM.PLB

As an 1llu5trat10n of the ideas prcscntcd in thc forcgomv
consider the measurement of velocity with a Pitot tubs in an ai
stream’. - If ¢ denotes the velocity, Ap the pressure dificrence be-
tween the Pitor tube and the acmosphere, and p; - and T, the
pressure and temperature of the air, rcspccnvc}y, thcn Be
noulli’s equatxon and thc pcrfcct-gas equation of state give

Here the result is the velocity and thc variables* are Ap,
s, and T,. Even in this apparently simple measurement thcrc
are a great many possible sources of erfor which give risé to the -
uncertainties. . Some of them are ahgnmcnt of the Pitot tube in’
the flow, leaks in the pressure tubing, changes in borc, or d1ffcr—
ences in surface condition of the manometer measuring the:

lincar and sccond-powcr cquatlons for predicting the appro—
pnatc incerval in the result in the case of dxﬂ’crcnt distribu—
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TABLE
Normal
{f SR S
‘ | = ———1::_5 v
_ Distribution of variable. . ... ..o ] Var

—RY/2

R) = —=-
FRY T

for all R

-

Desired odds. ... oovnce o 91 19:1 99:1
. Actual odds for interval giver by
sccond-power €QUALION. . k- 9:1 1911 99:1
Actual odds for interval given by
~ linear equation.. .. .- - - e e o490 T 178:1 370:1
* Correcr interval of resule for daos. o .
sited odds. .- oL e s e e 1.64 1.96 2.58
terval given by second-powc : .
“ equAtION. . .. .nores e e et 1.64 1.96 2.58
Taterval given by lincar. ,cqy;tibn. S 3+ .77 3.64

Normal

[ f) = —= emv/2
QRTINS 1= Tn
Distribution of. vari‘zbl.c: .......... \ﬂ[ for all v
- v { S I Ry2
o [ = =
tion of resule. . Dol e . 2
R ‘ o | for all R
Desired odds. .- - . .- ......... 9:1 1911 99:1
Actuil‘odds for interval givea by
sccond-power equation.. . o9t 19:1 99:1
‘Actual odds for intcrval given by .
linear equation. .. - .- - - e @@L @1 ol
"% Correct interval of resule for'de- .
o b sited odds. . ..o 1.64 1.96 2.58
) Interval given by second-power :
equation . . - - . . SN oo 1.64 1.96 2.58
Interval given by lincar cquation. ... ... @ - o ©

fucruations in atmospheric and stream pres-
In this casc the Mach number must not
pumber too low. In’ either casec
ble frictionless flow inherent in

pressure difference,
sure, and so on.
be too high nor the Reynolds
the assumption of incompressi

Bernoulli’s equation is violated.
Let us suppose that the Mach number and the Reynolds num-

ber have proper values. In order to use Equation [7] all uncer-
ainty intervals for the variables must be based on the same
. odds. Twenty to one will be used. If T, is measured by 2
calibrated mercury-in-glass thermometer, p, with 2 Bourdon
gage, and Ap with a2 U-tube manometer, 2 description of the

dings might be

 ap=80=01in. HOQ0t0 1)

T, = 67.4F = 5271 =0.2 deg F abs (20 to 1
2, =147 =03 psia @00 1)

Il

1 DISTRIBUTION OF THE RESULT: R = 4+ )/ V2

e for )| Simld. . S

7 TABLE2 DISTRIBUTION OF THE RESULT: R = lim (o + 2 4 - - -
P : : Lo n—-o -

Sinusoidal 'l;riaxxlg'ular"—

fle) = /6 — lesly
for |v] < /& |

Define 4 = N/ 72y — = then

f() = AG + cos Av)rm

2 R=

A e - o
J®) = —A_[G/2)sin ViR | fRY = —= — —= -
‘ lﬂ.z\/{ l_ PO 3\/3 3‘\/;

“ 4 (r— AR/V2) foro < |R| < V= an

- LN
‘2 + cos Vv 24K )

j®y = 4. —:Rl . R

foro < |R| < Vir/4

3v3 3 ~3

| for V3 < IR] <=V

9:1 19:1 99: I 9:r 191 :
8.3:1 16.6:1 51X 9-4:1 17.2°1
S4:t 2§7°1 6610:1 .7»5.:'1: 30011
1.68 y 1.95 .44 £-66 1.94
i 0 1.8 126 1.68 1.90
1.29 2.66 3.20 T 1.37 1.69

+ vn),/\/‘krﬁz

‘ Sinﬁsbid;l ' Triangular

Dcfine A = /7?3 — z; then G = 1/\E — 1o /6

f) = ACG + cos Av)/2m for lo] £ V6

for |»| 5 /A REATER

JRY'= e L2 CHRY = R

) - '\/Lr ‘\/11!'

for all R . forall R
9:r 19:1 99: 1 971 . : 191

8.5:x1 15.7:1 . 417X G.6:x 16.4°1
@Iy o1 ©:x w1 o
1.64 1.96 2.58 S 164 ’ _AYI.96
1:62 1.88 226 v r.68 I.90
‘o o o © m-

Evaluating the (QR/Or;) terms ana.substiching -intc
tion [7] - .- S . .

1 2RT, o CANET p
[ R “gD (wAp)z + 1 z(AP)I:TAgo (wp“>'2 .

Y2 =14 (ap)Pa 4 p
1 2(ap)Rg, : V2
o f; 22p)Ree Pfl).“g_ Cu{m)’]

_ Equation [9] is greatly simplified uponv dividing Ey E(
[8]to nondimensionalize L T

we _ we _ [ (Lee)’ AN Ewrozi"
c R [(z Ap) +(2 Pa) + (,2 T)]

This nondimensional form is simpler in most cases.:

e i 1 TR i e SRR TR NN IS

o - e rpmazsa = T TR A




be obrtained as shown previously, or alternatively by usc of -

logarithmic differentiation on Equation [8], or by substituting
c + wgfore, p, + %y, for p,, and so on, mulriplying out and
neglecting terms in w2, _

When the numbers are substituted into Equation [10] using
comsistent units, one obrains

wo/e = 1/2[108 X 10 + 4.15 3 104 + 1.44 x 10-7]'
‘ : ' "'="1.1 per cent

This calculation illustrates that if the OR/Q» terms are neg-
lected, as is sometimes done, serious erenre acene Tn chic cace
w./c would have been in error by a factor of 2. It also shows
thar improving the measurement in the tem perature would not
change w./c appreciably, but a2 S0 per cent reduction in w_/c
could be c%taincd simply by using a manometer instead of a
Bourdon g3ge to measure Pa- " This illustrates the utility of
the second-power equation in determining which variables
nced most attention in improving the accuracy of an experi-

ment.
PRESENTATION OF UNCERTAINTIES 1N A ReporT

The questions, “'How should urcertainties jn the variables .
~ be estimated and described?”’ and “'How do the uncertainties

propagate into the results?’’ have now been discussed and con-
clusions reached. The answer o the final question, **What

should be presented in'z report?” caanor be given definitively _

since it is subject to the demands of space and time as well as
the practices of socicties and publishers. . The authors feel that

presentation of uncertainey intervals fort
Equation [7] along with the odds used should be sufficient in
most cases. For more elaboratre reports the uncertai oty iater-
vals assigned to cach variable also might be useful.

Concilusion ~ 7
“The method suggested here can be summarized as follows:
1 Describe ;H’e: urg'cgﬁ:tainty ‘in cach variable -as ’
vz’ncén = Uﬂbc&éjllty interval (6dds of bto1)..... [13

“2 Compurte the unceftainty interval in each resule. as

JPR N\ [oR 1\ 2R \*
G (C VR G P € ) )

3 Present at least the valuc of wy, and the chosen odds for
cach result as an integral part of a report or paper.

The value of wg found in this way will be based og essentially
the same odds as the uncertainty intervals in the variables,
The only importaat restriction is that the uncertainties in each
of the variables must beindependent.

The method thus summarized provides 2 means for describing
and analyzing the uncerrainties in single-sample experiments.
In this method the actual estimation of the uncertainty intervals
must still depend on the judgment of the experimenter. At
present this judgment can be acquired only by laboratory ex-
perience since data on the toral uncertainty interval in most
instruments are unavailable, A great many engincering
experiments aré part sin gle-sample and  part multiple-
sample. ) '

In such cases the available repeated measurements should be
analyzed by statistical methods to supplement the judgment of
the experimenter. In cither case this method should provide
2 simple and uscful tool by which the experienced investi-
garor can more. accurately describe and analyze experimental
uncertainty in both the laboratory and design stages of his

work.
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APPENDIZ

The three different frcqncncy—distribxitiorg functions chosen-

“-were all assumed to have zero mean and unite standard deviz.-

v0 the

For Table 1 the result was chosen to be propdn:"b-nAal

sum of two variatles

R = (ﬂx + ﬂz)/\/z ....... L . El]j

The factor 1/+/2 is introduced simply to give the. resule a
standard deviation of unicy; it does not affect the comparison .
between the linear and second-power equations.
quency-distribution function of this result can . be

cvaluating the following integral® ... .. . =~ - -

fFR) = ff(‘\/zR — Vl) f(”x) V2 z.{ﬂl_
Calculation of the distribution function of the sum of more.

than two variables becomes quite tedious.  For the Iimiting
casc of an infinite number of variables, howc'vcr’, the réshlting :

. . . - ! . - Ce 4 .
distribution is normal,”and a com patison becomes easy tomak

The result will have 2 un tion if one takes R
be : iy

; R = lim (o + 9, 4. ’_'_f_.;*f_”;.)/ V'n

8 Reference (llA),. pp40—48
" Ibid., p. 108,




