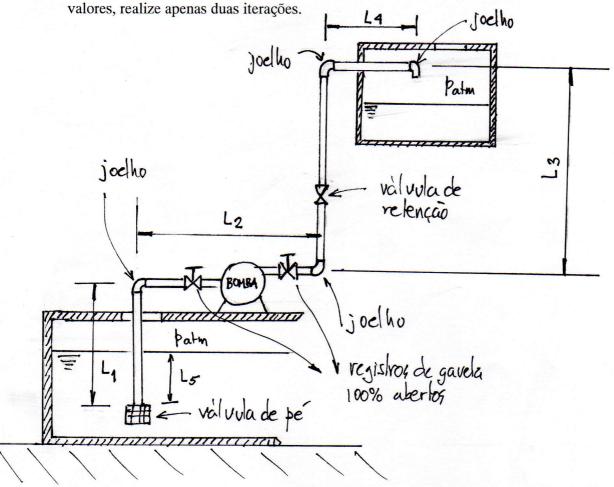

MEC 1320 - MECÂNICA DOS FLUIDOS I

Terceira Prova, 24 de junho de 2010

SEM CONSULTA

Primeira questão: Um remédio está sendo sugado de um recipiente com uma seringa como, mostra a figura. A seringa tem diâmetro interno D e comprimento máximo L_s . A agulha tem diâmetro interno d e comprimento L_a . O líquido apresenta uma pressão de vapor p_v , uma massa específica ρ , e uma viscosidade dinâmica μ .


- a) Determine, em forma literal, a máxima velocidade (constante) com que o êmbolo da seringa pode ser puxado sem que bolhas sejam produzidas no líquido. Considere a seringa como estando na posição horizontal e despreze as perdas localizadas na entrada da agulha e na junção da agulha com a seringa.
- b) Determine o valor da velocidade pedida no item anterior para os seguintes valores numéricos: D=5mm, d=0.3 mm, $L_s=50$ mm, $L_a=60$ mm, $p_v=4700$ Pa, $\rho=900$ kg/m^3 , $e \mu=2x10^{-3}kg/m.s$

<u>Segunda questão</u>: A potência requerida para acionar um ventilador depende da massa específica do fluido, ρ , da vazão volumétrica, Q, do diâmetro das pás, D, e da velocidade angular, ω .

- a) Se um ventilador com D_1 = 200 mm fornece uma vazão volumétrica de Q_1 = 0,4 m^3/s de ar, quando gira a ω_1 = 2400 RPM, que vazão volumétrica pode ser esperada de um ventilador geometricamente semelhante com D_2 = 400 mm girando a ω_2 = 1850 RPM?
- b) Se a potência requerida pelo ventilador com diâmetro D_I nas condições especificadas no item anterior é de 2250 Watts, qual a potência requerida pelo ventilador com diâmetro D_2 ?

<u>Terceira questão</u>: Calcule o tempo necessário para encher uma caixa de água de 10.000 litros situada no topo de um edifício utilizando a instalação indicada na figura. A bomba instalada possui uma potência nominal de 2250 Watts e eficiência de 75%. A tubulação é toda de PVC, podendo ser considerada como tubo hidrodinamicamente liso. Apresente o equacionamento até o final em forma literal. Após substituir os valores realize apenas duas iterações

DADOS	
Joelho	K=0,3
Registro gaveta 100% aberto	Le/D=8
Válvula de pé	K=1
Válvula de retenção	K=0,8
$L_1(m)$	3
$L_2(m)$	5
L ₃ (m)	20
L ₄ (m)	2
D (mm)	30
$\rho (kg/m^3)$	1000
μ (kg/m.s)	10-3
L=(m)	2 M

FORMULÁRIO

• Equação da estática de fluidos: $-\vec{\nabla}p + \rho \, \vec{g} = 0$

• Equação de estado para gás perfeito : $p = \rho RT (R_{ar} = 287 \frac{Nm}{kg K})^{-1}$

• Equação da continuidade: $\frac{\partial}{\partial t} \int_{VC} \rho \, d \forall + \int_{SC} \rho \, \vec{V} \, d\vec{A} = 0$

• Equação da Quantidade de Movimento Linear:

$$\vec{F}_{S} + \vec{F}_{B} - \int_{VC} \vec{a}_{rf} \rho \, d \forall = \frac{\partial}{\partial t} \int_{VC} \vec{V}_{xyz} \rho \, d \forall + \int_{SC} \vec{V}_{xyz} \rho \, \vec{V}_{xyz} \cdot d \vec{A}$$

• Equação da energia:

$$\dot{Q} - \dot{W}_{eixo} - \dot{W}_{cisa.} - \dot{W}_{outros} = \frac{\partial}{\partial t} \int_{VC} e\rho \, d\nabla + \int_{sc} \left(u + pv + \frac{V^2}{2} + gz \right) \rho \vec{V} \cdot d\vec{A}, e = u + V^2/2 + gz$$

• Equação de Bernoulli para escoamento ao longo de uma linha de corrente: $\frac{p}{\rho} + \frac{V^2}{2} + \rho g = const.$

• Para escoamento laminar desenvolvido em tubo circular: $Q = \frac{\pi \Delta p D^4}{128 \,\mu L}$

• Equação da energia para tubo com perda de carga:

$$\left(\frac{p}{\rho} + \frac{\alpha \overline{V}^2}{2} + gz\right)_1 - \frac{\dot{W}_B}{\dot{m}} - \left(\frac{p}{\rho} + \frac{\alpha \overline{V}^2}{2} + gz\right)_2 = h_l + h_{lm}$$

$$h_l = f \frac{L}{D} \frac{\overline{V}^2}{2}$$
 $h_{lm} = k \frac{\overline{V}^2}{2}$ $h_{lm} = f \frac{L_e}{D} \frac{\overline{V}^2}{2}$