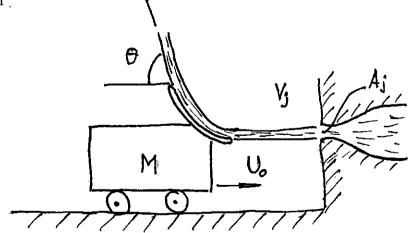
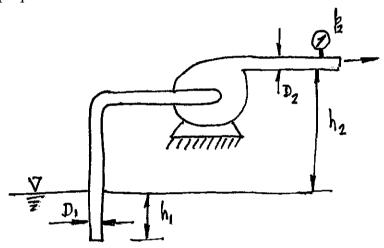

MEC 1320 – MECÂNICA DOS FLUIDOS I


Segunda Prova, 1 de junho de 2010

SEM CONSULTA

<u>Primeira questão</u> (4 pontos): Aço quente está sendo laminado em um laminador de rolos, como mostrado na figura. O aço depois de laminado tem sua massa específica aumentada em 10%. Se a velocidade de alimentação do aço é V_1 , qual a velocidade do material saindo do laminador, V_2 ? O processo de laminação produz um aumento de 9% na largura da chapa laminada. Depois de resolver o problema em forma literal, determine o valor numérico de V_2 , usando os valores V_1 =0,2 m/s, H_1 =30 mm e H_1 =10 mm.



<u>Segunda questão</u> (3 pontos): Um carrinho com uma aleta rola sobre uma superfície horizontal. A massa do carrinho é M e sua velocidade inicial U_o. Despreze a resistência de rolamento e a resistência do ar. Em t=0, a aleta é atingida por um jato de água com velocidade V_j e em sentido oposto ao movimento. Determine o tempo necessário para o carrinho parar. Use M=10,5 kg, U_o=12,5 m/s, V_j=8,25 m/s e A_j=900 mm²

Terceira questão (3 pontos): Uma bomba aspira água de um reservatório através de um tubo de diâmetro D₁=150 mm e descarrega por um tubo com diâmetro D₂=75 mm. A extremidade do tubo de aspiração está a 2 m abaixo da superfície do reservatório. O manômetro no tubo de descarga (que está a 2 metros acima da superfície do reservatório) indica 170 kPa de pressão manométrica. A velocidade no tubo de descarga é 3 m/s. Se a eficiência da bomba é de 75% determine a potência necessária para acioná-la.

Nota: despreze o calor trocado pela bomba com o ambiente e a variação de energia interna da água que passa bomba.

FORMULÁRIO

- Equação da estática de fluidos: $-\vec{\nabla}p + \rho\,\vec{g} = 0$
- Equação de estado para gás perfeito : $p = \rho RT \ (R_{ar} = 287 \ \frac{Nm}{kg \ K})$
- Equação da continuidade: $\frac{\partial}{\partial t} \int_{VC} \rho \, d\nabla + \int_{SC} \rho \, \vec{V} \cdot d\vec{A} = 0$
- Equação da Quantidade de Movimento Linear:

$$\vec{F}_S + \vec{F}_B - \int_{VC} \vec{a}_{rf} \rho \, d \nabla = \frac{\partial}{\partial t} \int_{VC} \vec{V}_{xyz} \rho \, d \nabla + \int_{SC} \vec{V}_{xyz} \rho \, \vec{V}_{xyz} \cdot d \vec{A}$$

• Equação da energia:

$$\dot{Q} - \dot{W}_{eixo} - \dot{W}_{cisa.} - \dot{W}_{outros} = \frac{\partial}{\partial t} \int_{VC} e\rho \, d\forall + \int_{VC} \left(u + pv + \frac{V^2}{2} + gz \right) \rho \, \vec{V} \cdot d\vec{A} \,, \, e = u + V^2/2 + gz$$

• Equação de Bernoulli para escoamento ao longo de uma linha de corrente: $\frac{p}{\rho} + \frac{V^2}{2} + \rho g = const.$